Surface Integral Equation-Domain Decomposition Scheme for Solving Multiscale Nanoparticle Assemblies With Repetitions
نویسندگان
چکیده
منابع مشابه
Domain decomposition for multiscale PDEs
We consider additive Schwarz domain decomposition preconditioners for piecewise linear finite element approximations of elliptic PDEs with highly variable coefficients. In contrast to standard analyses, we do not assume that the coefficients can be resolved by a coarse mesh. This situation arises often in practice, for example in the computation of flows in heterogeneous porous media, in both t...
متن کاملA Numerical Method for Solving Stochastic Volterra-Fredholm Integral Equation
In this paper, we propose a numerical method based on the generalized hat functions (GHFs) and improved hat functions (IHFs) to find numerical solutions for stochastic Volterra-Fredholm integral equation. To do so, all known and unknown functions are expanded in terms of basic functions and replaced in the original equation. The operational matrices of both basic functions are calculated and em...
متن کاملNumerical quasilinearization scheme for the integral equation form of the Blasius equation
The method of quasilinearization is an effective tool to solve nonlinear equations when some conditions on the nonlinear term of the problem are satisfied. When the conditions hold, applying this technique gives two sequences of coupled linear equations and the solutions of these linear equations are quadratically convergent to the solution o...
متن کاملDomain decomposition preconditioners for multiscale problems
In this paper, we study domain decomposition preconditioners for multiscale elliptic problems in high contrast media. We construct preconditioners such that the condition number of the preconditioned system is independent of media contrast. For this purpose, multiscale spaces for the interpolation on the coarse grid is developed using a local weighted spectral problem. A main observation is tha...
متن کاملRobust Domain Decomposition Algorithms for Multiscale PDEs
In this paper we describe a new class of domain deomposition preconditioners suitable for solving elliptic PDEs in highly fractured or heterogeneous media, such as arise in groundwater flow or oil recovery applications. Our methods employ novel coarsening operators which are adapted to the heterogeneity of the media. In contrast to standard methods (based on piecewise polynomial coarsening), th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Photonics Journal
سال: 2016
ISSN: 1943-0655
DOI: 10.1109/jphot.2016.2614895